Sunday, November 6, 2011

Fancy new Disk array technology

Well first off, I need to put a big disclaimer down.  These are my opinions, and my opinions only.  These to do not reflect the opinions of my employer, my spouse or my dog.

I was watching some twitter updates go by and this blogpost caught my eye. 
http://chucksblog.emc.com/chucks_blog/2011/10/shifts-happen.html

This blog was talking about new disk technology, and part of the covered the idea of FAST technology.  If you haven't heard of FAST (this is the EMC name, I'm sure other vendors have their own flavors), it is disk technology that moves blocks to the best tier of storage automagically. Really !  The idea is that you buy an array with 3 different tiers of disk.  Flash, Fibre channel, and Sata.  The disk array learns the patterns for the data access, and moves the data to the appropriate tiers.  Sounds great right  ?  It does make sense.. 
Let take an example...  Let say that you are a supplier and you supply parts for 100,000 small businesses.  You keep historical data their orders for 5 years for reference.  Whenever they place a new order you reference their latest orders to find patterns.

So following this workload you can guess what happens.. The current data for your customers stays in fiber channel (everything starts in fibre channel),  The old data gets migrated to sata, and your customer master data will most likely go the Flash.  All well and good.  Even though customers only order every month, their recent activity gets moved to a higher tier disk, and all that old history gets moved to Sata.  

Now lets throw in a physical standby, dataguard .

With dataguard, we are writing the new blocks of history, and they are not accessed (this is cold standby).  If you mix this data with other applications that are busy, all your data for the standby database is surely going to end up in Sata over time.. This makes perfect sense to the algorithms for the array.  This historical data (or even current data) isn't accessed. For your standby sata it is !!

Bang... Sinking feeling.... wham.. You do a failover. 

Now lets see what happens.. All your data is in Sata.  You are now accessing, and trying to give your customers the same performance they are used to.  You system is slow.  You have 100,000 business, that access data over the course of the month.  How long do you think it takes to move all the data from SATA to Flash or Fibre ?  It could take quite a while for your system to learn the new patterns, and during this time your old primary (now standby) has it's data pattern getting changed. The data is getting migrated to SATA.  You stay in your alternative site for a month, fail back, and guess what.. WHAM again.  The disk array has to learn the pattern again.

As I said, this is all conjecture, and solely my opinion.

Configuring an Exadata (follow up)

Now that we have the exadata and it is up and running, we are working on getting it configured for ease of maintenance.  I know there are some notes from metalink that can be helpful.

The first thing I wanted to do was get the machine (and all the hardware) configured with OCM (oracle Configuration manager).  Like most things with the exadata, there is a special configuration piece for this called the "mass deployment Kit"..  Here is a link for the latest information on it.

 On MOS [ID 1319476.1]

I am still in the process of getting this configured by using the Oracle support Hub (or repeater).  A lot of this information is contained in the PDF mentioned in the My Oracle Support note.  As you can imagine, the exadata is usually installed in a companies core infrastructure, far within any firewalls.  Connecting directly out to the internet isn't always possible, so setting up a repeater (like a proxy) as part of grid (or separately) will help get your configuration information sent up to oracle support.

The second item is Grid/Cloud 12c.  I have to say that I set up Cloud 12c for the exadata about 48 hours after it came out.  It was relatively easy.  You just add the database nodes (and push out the agents), then once the database nodes are done, you use the tools with grid to walk you through discovering all the components (by starting with one of the database nodes). It all worked well, and there are some notes now on this.  Oracle Enterprise Manager Cloud Control 12c Setup Automation kit for Exadata

So the exadata is close to be set up.. I believe setting up OCM is one of the most challenging things.  One of the first steps is to create a spreadsheet with the configuration information.. Following this is the steps from the documentation.  The one complaint I would state is that a lot of the information for the OCM configuration is the same information provided to the "one" script.  I am hoping down the road the ACS group (or whoever does the configuration), also configures OCM, or at least provides the input for it.  OCM isn't necessary, but I think having it configured will save a lot of time when we need to open up an SR.



From the manual......

**************************************************************

Use your favorite spreadsheet editor to create the input csv file. To facilitate the use of the input

file, the Mass Deployment document contains a template for you to use in providing the field
values (ocm_companion/distributions/ocm/md/sample_input.csv). See Section 2.4.5 “Input File”
in Mass Deployment documentation for details on the input file format.


Much of the information required as input into Mass Deployment can be retrieved from the
Exadata Database Machine configuration worksheets. Please see Appendix A for examples.


1. Copy/rename the sample_input.csv file (e.g., getinfo_exadata_csi_input.csv). This file
can be used as a template for entering the data for each host on which OCM will be
deployed and/or configured. Add information for all the compute nodes as listed below.


a. Action: Set this column to “get_info” to retrieve information about the state of the
OCM collector in all the Exadata Database (compute node) Oracle homes.


b. Host-Name: Host name of the node.


c. Host-User: OS user that owns the Oracle home.


d. Host-Password: Password for the OS user - set to “__PROMPT__” (two
underscores before and after). See Section 2.4.4 Credential s in the Mass
Deployment Documentation or Appendix B of this document for secure ways of
providing the password. If the same credentials are being used for multiple
hosts, another option is to use a password group name in the password.csv file
as described in Section 2.4.1 of the Oracle Configuration Manager Companion
Distribution Guide .


e. Oracle Home: Oracle Database home location.

f. Db SID: Set the Database SID for the last database host in the input file. This is
required for Mass Deployment to instrument the database for configuration data
collections. This script need only be run on one of the database hosts, but must
be run after the last server is installed.


g. DB Type: Set to 'db' for the last database host in the input file.Specify only for
Install and Instrumentation actions.


h. ML-User: Enter the customer's MOS Account username (email address).


i. ML-CSI: This field holds the Exadata Hardware Customer Support Identifier
(CSI) an can be used in conjunction with the ML-User field to authenticate OCM
uploads. If the CSI is not know, see Appendix B.


j. ML-Pwd: Leave it as blank (should only be used if the CSI is not known).


k. DB-user: Database username required to instrument the database.


l. DB-Pwd: Database user password

Friday, October 14, 2011

Grid control 12c

I've been spending my week playing with Grid Control 12c. I know it has only been out just over a week, but I was very excited to see if it is that much better than grid 11g. My company is currently rolling out Grid 11g, and I wanted to see if we should be pushing for grid 12c right on it's heels.

I am extremely impressed with this product, so much so that I set up a virtual environment with Grid 12c to check it out.


I've spent the last couple of days getting my exadata configured in grid 12c. After a couple of false starts (and reinstalling of the agent) I finally got it up and running. These are my lessons learned
  • First discover your database nodes, and make sure the name you use is the default fully qualified name.
  • Add the database machine as a target, and make sure you have all the passwords including the nm2user on the IB switches (password is changeme), and you also need the id and password for the PDU (admin/admin).
Once you get these all set, Grid 12c will recognize your machine, and you will see wonderous things. Here are 2 example screens from an exadata..

The first one shows the IB traffic through the switch,

The second one shows the combined load on the Storage cells.

Even if you don't have an exadata, here is my favorite ASH analytics. Notice the timeframe is very small.




It is definately worth checking out.